p-group, metabelian, nilpotent (class 2), monomial
Aliases: C23.202C24, C22.412+ 1+4, C22.262- 1+4, (C4×Q8)⋊18C4, C42⋊5C4.3C2, C42.179(C2×C4), C42⋊8C4.19C2, C42⋊4C4.12C2, C22.93(C23×C4), C4.15(C42⋊C2), (C22×C4).467C23, (C2×C42).410C22, (C22×Q8).397C22, C2.C42.39C22, C23.63C23.1C2, C23.67C23.24C2, C23.65C23.29C2, C2.3(C22.36C24), C2.2(C22.35C24), C2.7(C23.32C23), C2.10(C23.33C23), (C4×C4⋊C4).34C2, (C2×C4×Q8).21C2, C4⋊C4.205(C2×C4), (C2×Q8).193(C2×C4), C22.87(C2×C4○D4), (C2×C4).645(C4○D4), (C2×C4⋊C4).176C22, (C2×C4).225(C22×C4), C2.24(C2×C42⋊C2), SmallGroup(128,1052)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.202C24
G = < a,b,c,d,e,f,g | a2=b2=c2=1, d2=c, e2=f2=a, g2=b, ab=ba, ac=ca, ede-1=gdg-1=ad=da, fef-1=ae=ea, af=fa, ag=ga, bc=cb, fdf-1=bd=db, be=eb, bf=fb, bg=gb, cd=dc, ce=ec, cf=fc, cg=gc, eg=ge, fg=gf >
Subgroups: 332 in 222 conjugacy classes, 140 normal (20 characteristic)
C1, C2, C2, C4, C4, C22, C22, C2×C4, C2×C4, Q8, C23, C42, C42, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×Q8, C2×Q8, C2.C42, C2.C42, C2×C42, C2×C42, C2×C4⋊C4, C2×C4⋊C4, C4×Q8, C22×Q8, C42⋊4C4, C4×C4⋊C4, C42⋊8C4, C42⋊5C4, C23.63C23, C23.65C23, C23.67C23, C2×C4×Q8, C23.202C24
Quotients: C1, C2, C4, C22, C2×C4, C23, C22×C4, C4○D4, C24, C42⋊C2, C23×C4, C2×C4○D4, 2+ 1+4, 2- 1+4, C2×C42⋊C2, C23.32C23, C23.33C23, C22.35C24, C22.36C24, C23.202C24
(1 9)(2 10)(3 11)(4 12)(5 70)(6 71)(7 72)(8 69)(13 73)(14 74)(15 75)(16 76)(17 77)(18 78)(19 79)(20 80)(21 81)(22 82)(23 83)(24 84)(25 85)(26 86)(27 87)(28 88)(29 89)(30 90)(31 91)(32 92)(33 93)(34 94)(35 95)(36 96)(37 97)(38 98)(39 99)(40 100)(41 101)(42 102)(43 103)(44 104)(45 105)(46 106)(47 107)(48 108)(49 109)(50 110)(51 111)(52 112)(53 113)(54 114)(55 115)(56 116)(57 117)(58 118)(59 119)(60 120)(61 121)(62 122)(63 123)(64 124)(65 127)(66 128)(67 125)(68 126)
(1 99)(2 100)(3 97)(4 98)(5 126)(6 127)(7 128)(8 125)(9 39)(10 40)(11 37)(12 38)(13 43)(14 44)(15 41)(16 42)(17 47)(18 48)(19 45)(20 46)(21 51)(22 52)(23 49)(24 50)(25 55)(26 56)(27 53)(28 54)(29 59)(30 60)(31 57)(32 58)(33 63)(34 64)(35 61)(36 62)(65 71)(66 72)(67 69)(68 70)(73 103)(74 104)(75 101)(76 102)(77 107)(78 108)(79 105)(80 106)(81 111)(82 112)(83 109)(84 110)(85 115)(86 116)(87 113)(88 114)(89 119)(90 120)(91 117)(92 118)(93 123)(94 124)(95 121)(96 122)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)(65 67)(66 68)(69 71)(70 72)(73 75)(74 76)(77 79)(78 80)(81 83)(82 84)(85 87)(86 88)(89 91)(90 92)(93 95)(94 96)(97 99)(98 100)(101 103)(102 104)(105 107)(106 108)(109 111)(110 112)(113 115)(114 116)(117 119)(118 120)(121 123)(122 124)(125 127)(126 128)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)
(1 25 9 85)(2 86 10 26)(3 27 11 87)(4 88 12 28)(5 24 70 84)(6 81 71 21)(7 22 72 82)(8 83 69 23)(13 89 73 29)(14 30 74 90)(15 91 75 31)(16 32 76 92)(17 93 77 33)(18 34 78 94)(19 95 79 35)(20 36 80 96)(37 113 97 53)(38 54 98 114)(39 115 99 55)(40 56 100 116)(41 117 101 57)(42 58 102 118)(43 119 103 59)(44 60 104 120)(45 121 105 61)(46 62 106 122)(47 123 107 63)(48 64 108 124)(49 125 109 67)(50 68 110 126)(51 127 111 65)(52 66 112 128)
(1 17 9 77)(2 48 10 108)(3 19 11 79)(4 46 12 106)(5 58 70 118)(6 29 71 89)(7 60 72 120)(8 31 69 91)(13 81 73 21)(14 112 74 52)(15 83 75 23)(16 110 76 50)(18 40 78 100)(20 38 80 98)(22 44 82 104)(24 42 84 102)(25 33 85 93)(26 64 86 124)(27 35 87 95)(28 62 88 122)(30 66 90 128)(32 68 92 126)(34 116 94 56)(36 114 96 54)(37 105 97 45)(39 107 99 47)(41 109 101 49)(43 111 103 51)(53 61 113 121)(55 63 115 123)(57 67 117 125)(59 65 119 127)
(1 103 99 73)(2 44 100 14)(3 101 97 75)(4 42 98 16)(5 36 126 62)(6 93 127 123)(7 34 128 64)(8 95 125 121)(9 43 39 13)(10 104 40 74)(11 41 37 15)(12 102 38 76)(17 51 47 21)(18 112 48 82)(19 49 45 23)(20 110 46 84)(22 78 52 108)(24 80 50 106)(25 59 55 29)(26 120 56 90)(27 57 53 31)(28 118 54 92)(30 86 60 116)(32 88 58 114)(33 65 63 71)(35 67 61 69)(66 124 72 94)(68 122 70 96)(77 111 107 81)(79 109 105 83)(85 119 115 89)(87 117 113 91)
G:=sub<Sym(128)| (1,9)(2,10)(3,11)(4,12)(5,70)(6,71)(7,72)(8,69)(13,73)(14,74)(15,75)(16,76)(17,77)(18,78)(19,79)(20,80)(21,81)(22,82)(23,83)(24,84)(25,85)(26,86)(27,87)(28,88)(29,89)(30,90)(31,91)(32,92)(33,93)(34,94)(35,95)(36,96)(37,97)(38,98)(39,99)(40,100)(41,101)(42,102)(43,103)(44,104)(45,105)(46,106)(47,107)(48,108)(49,109)(50,110)(51,111)(52,112)(53,113)(54,114)(55,115)(56,116)(57,117)(58,118)(59,119)(60,120)(61,121)(62,122)(63,123)(64,124)(65,127)(66,128)(67,125)(68,126), (1,99)(2,100)(3,97)(4,98)(5,126)(6,127)(7,128)(8,125)(9,39)(10,40)(11,37)(12,38)(13,43)(14,44)(15,41)(16,42)(17,47)(18,48)(19,45)(20,46)(21,51)(22,52)(23,49)(24,50)(25,55)(26,56)(27,53)(28,54)(29,59)(30,60)(31,57)(32,58)(33,63)(34,64)(35,61)(36,62)(65,71)(66,72)(67,69)(68,70)(73,103)(74,104)(75,101)(76,102)(77,107)(78,108)(79,105)(80,106)(81,111)(82,112)(83,109)(84,110)(85,115)(86,116)(87,113)(88,114)(89,119)(90,120)(91,117)(92,118)(93,123)(94,124)(95,121)(96,122), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64)(65,67)(66,68)(69,71)(70,72)(73,75)(74,76)(77,79)(78,80)(81,83)(82,84)(85,87)(86,88)(89,91)(90,92)(93,95)(94,96)(97,99)(98,100)(101,103)(102,104)(105,107)(106,108)(109,111)(110,112)(113,115)(114,116)(117,119)(118,120)(121,123)(122,124)(125,127)(126,128), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,25,9,85)(2,86,10,26)(3,27,11,87)(4,88,12,28)(5,24,70,84)(6,81,71,21)(7,22,72,82)(8,83,69,23)(13,89,73,29)(14,30,74,90)(15,91,75,31)(16,32,76,92)(17,93,77,33)(18,34,78,94)(19,95,79,35)(20,36,80,96)(37,113,97,53)(38,54,98,114)(39,115,99,55)(40,56,100,116)(41,117,101,57)(42,58,102,118)(43,119,103,59)(44,60,104,120)(45,121,105,61)(46,62,106,122)(47,123,107,63)(48,64,108,124)(49,125,109,67)(50,68,110,126)(51,127,111,65)(52,66,112,128), (1,17,9,77)(2,48,10,108)(3,19,11,79)(4,46,12,106)(5,58,70,118)(6,29,71,89)(7,60,72,120)(8,31,69,91)(13,81,73,21)(14,112,74,52)(15,83,75,23)(16,110,76,50)(18,40,78,100)(20,38,80,98)(22,44,82,104)(24,42,84,102)(25,33,85,93)(26,64,86,124)(27,35,87,95)(28,62,88,122)(30,66,90,128)(32,68,92,126)(34,116,94,56)(36,114,96,54)(37,105,97,45)(39,107,99,47)(41,109,101,49)(43,111,103,51)(53,61,113,121)(55,63,115,123)(57,67,117,125)(59,65,119,127), (1,103,99,73)(2,44,100,14)(3,101,97,75)(4,42,98,16)(5,36,126,62)(6,93,127,123)(7,34,128,64)(8,95,125,121)(9,43,39,13)(10,104,40,74)(11,41,37,15)(12,102,38,76)(17,51,47,21)(18,112,48,82)(19,49,45,23)(20,110,46,84)(22,78,52,108)(24,80,50,106)(25,59,55,29)(26,120,56,90)(27,57,53,31)(28,118,54,92)(30,86,60,116)(32,88,58,114)(33,65,63,71)(35,67,61,69)(66,124,72,94)(68,122,70,96)(77,111,107,81)(79,109,105,83)(85,119,115,89)(87,117,113,91)>;
G:=Group( (1,9)(2,10)(3,11)(4,12)(5,70)(6,71)(7,72)(8,69)(13,73)(14,74)(15,75)(16,76)(17,77)(18,78)(19,79)(20,80)(21,81)(22,82)(23,83)(24,84)(25,85)(26,86)(27,87)(28,88)(29,89)(30,90)(31,91)(32,92)(33,93)(34,94)(35,95)(36,96)(37,97)(38,98)(39,99)(40,100)(41,101)(42,102)(43,103)(44,104)(45,105)(46,106)(47,107)(48,108)(49,109)(50,110)(51,111)(52,112)(53,113)(54,114)(55,115)(56,116)(57,117)(58,118)(59,119)(60,120)(61,121)(62,122)(63,123)(64,124)(65,127)(66,128)(67,125)(68,126), (1,99)(2,100)(3,97)(4,98)(5,126)(6,127)(7,128)(8,125)(9,39)(10,40)(11,37)(12,38)(13,43)(14,44)(15,41)(16,42)(17,47)(18,48)(19,45)(20,46)(21,51)(22,52)(23,49)(24,50)(25,55)(26,56)(27,53)(28,54)(29,59)(30,60)(31,57)(32,58)(33,63)(34,64)(35,61)(36,62)(65,71)(66,72)(67,69)(68,70)(73,103)(74,104)(75,101)(76,102)(77,107)(78,108)(79,105)(80,106)(81,111)(82,112)(83,109)(84,110)(85,115)(86,116)(87,113)(88,114)(89,119)(90,120)(91,117)(92,118)(93,123)(94,124)(95,121)(96,122), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64)(65,67)(66,68)(69,71)(70,72)(73,75)(74,76)(77,79)(78,80)(81,83)(82,84)(85,87)(86,88)(89,91)(90,92)(93,95)(94,96)(97,99)(98,100)(101,103)(102,104)(105,107)(106,108)(109,111)(110,112)(113,115)(114,116)(117,119)(118,120)(121,123)(122,124)(125,127)(126,128), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,25,9,85)(2,86,10,26)(3,27,11,87)(4,88,12,28)(5,24,70,84)(6,81,71,21)(7,22,72,82)(8,83,69,23)(13,89,73,29)(14,30,74,90)(15,91,75,31)(16,32,76,92)(17,93,77,33)(18,34,78,94)(19,95,79,35)(20,36,80,96)(37,113,97,53)(38,54,98,114)(39,115,99,55)(40,56,100,116)(41,117,101,57)(42,58,102,118)(43,119,103,59)(44,60,104,120)(45,121,105,61)(46,62,106,122)(47,123,107,63)(48,64,108,124)(49,125,109,67)(50,68,110,126)(51,127,111,65)(52,66,112,128), (1,17,9,77)(2,48,10,108)(3,19,11,79)(4,46,12,106)(5,58,70,118)(6,29,71,89)(7,60,72,120)(8,31,69,91)(13,81,73,21)(14,112,74,52)(15,83,75,23)(16,110,76,50)(18,40,78,100)(20,38,80,98)(22,44,82,104)(24,42,84,102)(25,33,85,93)(26,64,86,124)(27,35,87,95)(28,62,88,122)(30,66,90,128)(32,68,92,126)(34,116,94,56)(36,114,96,54)(37,105,97,45)(39,107,99,47)(41,109,101,49)(43,111,103,51)(53,61,113,121)(55,63,115,123)(57,67,117,125)(59,65,119,127), (1,103,99,73)(2,44,100,14)(3,101,97,75)(4,42,98,16)(5,36,126,62)(6,93,127,123)(7,34,128,64)(8,95,125,121)(9,43,39,13)(10,104,40,74)(11,41,37,15)(12,102,38,76)(17,51,47,21)(18,112,48,82)(19,49,45,23)(20,110,46,84)(22,78,52,108)(24,80,50,106)(25,59,55,29)(26,120,56,90)(27,57,53,31)(28,118,54,92)(30,86,60,116)(32,88,58,114)(33,65,63,71)(35,67,61,69)(66,124,72,94)(68,122,70,96)(77,111,107,81)(79,109,105,83)(85,119,115,89)(87,117,113,91) );
G=PermutationGroup([[(1,9),(2,10),(3,11),(4,12),(5,70),(6,71),(7,72),(8,69),(13,73),(14,74),(15,75),(16,76),(17,77),(18,78),(19,79),(20,80),(21,81),(22,82),(23,83),(24,84),(25,85),(26,86),(27,87),(28,88),(29,89),(30,90),(31,91),(32,92),(33,93),(34,94),(35,95),(36,96),(37,97),(38,98),(39,99),(40,100),(41,101),(42,102),(43,103),(44,104),(45,105),(46,106),(47,107),(48,108),(49,109),(50,110),(51,111),(52,112),(53,113),(54,114),(55,115),(56,116),(57,117),(58,118),(59,119),(60,120),(61,121),(62,122),(63,123),(64,124),(65,127),(66,128),(67,125),(68,126)], [(1,99),(2,100),(3,97),(4,98),(5,126),(6,127),(7,128),(8,125),(9,39),(10,40),(11,37),(12,38),(13,43),(14,44),(15,41),(16,42),(17,47),(18,48),(19,45),(20,46),(21,51),(22,52),(23,49),(24,50),(25,55),(26,56),(27,53),(28,54),(29,59),(30,60),(31,57),(32,58),(33,63),(34,64),(35,61),(36,62),(65,71),(66,72),(67,69),(68,70),(73,103),(74,104),(75,101),(76,102),(77,107),(78,108),(79,105),(80,106),(81,111),(82,112),(83,109),(84,110),(85,115),(86,116),(87,113),(88,114),(89,119),(90,120),(91,117),(92,118),(93,123),(94,124),(95,121),(96,122)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64),(65,67),(66,68),(69,71),(70,72),(73,75),(74,76),(77,79),(78,80),(81,83),(82,84),(85,87),(86,88),(89,91),(90,92),(93,95),(94,96),(97,99),(98,100),(101,103),(102,104),(105,107),(106,108),(109,111),(110,112),(113,115),(114,116),(117,119),(118,120),(121,123),(122,124),(125,127),(126,128)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128)], [(1,25,9,85),(2,86,10,26),(3,27,11,87),(4,88,12,28),(5,24,70,84),(6,81,71,21),(7,22,72,82),(8,83,69,23),(13,89,73,29),(14,30,74,90),(15,91,75,31),(16,32,76,92),(17,93,77,33),(18,34,78,94),(19,95,79,35),(20,36,80,96),(37,113,97,53),(38,54,98,114),(39,115,99,55),(40,56,100,116),(41,117,101,57),(42,58,102,118),(43,119,103,59),(44,60,104,120),(45,121,105,61),(46,62,106,122),(47,123,107,63),(48,64,108,124),(49,125,109,67),(50,68,110,126),(51,127,111,65),(52,66,112,128)], [(1,17,9,77),(2,48,10,108),(3,19,11,79),(4,46,12,106),(5,58,70,118),(6,29,71,89),(7,60,72,120),(8,31,69,91),(13,81,73,21),(14,112,74,52),(15,83,75,23),(16,110,76,50),(18,40,78,100),(20,38,80,98),(22,44,82,104),(24,42,84,102),(25,33,85,93),(26,64,86,124),(27,35,87,95),(28,62,88,122),(30,66,90,128),(32,68,92,126),(34,116,94,56),(36,114,96,54),(37,105,97,45),(39,107,99,47),(41,109,101,49),(43,111,103,51),(53,61,113,121),(55,63,115,123),(57,67,117,125),(59,65,119,127)], [(1,103,99,73),(2,44,100,14),(3,101,97,75),(4,42,98,16),(5,36,126,62),(6,93,127,123),(7,34,128,64),(8,95,125,121),(9,43,39,13),(10,104,40,74),(11,41,37,15),(12,102,38,76),(17,51,47,21),(18,112,48,82),(19,49,45,23),(20,110,46,84),(22,78,52,108),(24,80,50,106),(25,59,55,29),(26,120,56,90),(27,57,53,31),(28,118,54,92),(30,86,60,116),(32,88,58,114),(33,65,63,71),(35,67,61,69),(66,124,72,94),(68,122,70,96),(77,111,107,81),(79,109,105,83),(85,119,115,89),(87,117,113,91)]])
44 conjugacy classes
class | 1 | 2A | ··· | 2G | 4A | ··· | 4L | 4M | ··· | 4AJ |
order | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | - | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | C4○D4 | 2+ 1+4 | 2- 1+4 |
kernel | C23.202C24 | C42⋊4C4 | C4×C4⋊C4 | C42⋊8C4 | C42⋊5C4 | C23.63C23 | C23.65C23 | C23.67C23 | C2×C4×Q8 | C4×Q8 | C2×C4 | C22 | C22 |
# reps | 1 | 1 | 1 | 2 | 2 | 4 | 2 | 2 | 1 | 16 | 8 | 1 | 3 |
Matrix representation of C23.202C24 ►in GL8(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 4 | 3 | 4 |
0 | 0 | 0 | 0 | 4 | 2 | 4 | 1 |
0 | 0 | 0 | 0 | 0 | 1 | 3 | 2 |
0 | 0 | 0 | 0 | 3 | 0 | 3 | 4 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 4 | 4 | 1 | 1 |
0 | 0 | 0 | 0 | 0 | 3 | 1 | 2 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
4 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 2 | 2 | 4 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 2 | 4 | 3 |
3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 2 | 4 | 0 |
0 | 0 | 0 | 0 | 4 | 4 | 1 | 1 |
G:=sub<GL(8,GF(5))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[1,2,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,2,2,0,0,0,0,0,0,0,0,1,4,0,3,0,0,0,0,4,2,1,0,0,0,0,0,3,4,3,3,0,0,0,0,4,1,2,4],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,4,0,4,0,0,0,0,0,4,3,0,0,0,0,0,0,1,1,0,0,0,0,0,1,1,2,0],[4,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,3,1,0,0,0,0,0,0,2,2,0,0,0,0,0,0,0,0,0,2,4,0,0,0,0,0,0,2,0,2,0,0,0,0,1,4,0,4,0,0,0,0,0,0,0,3],[3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,1,2,4,0,0,0,0,1,0,2,4,0,0,0,0,0,0,4,1,0,0,0,0,0,0,0,1] >;
C23.202C24 in GAP, Magma, Sage, TeX
C_2^3._{202}C_2^4
% in TeX
G:=Group("C2^3.202C2^4");
// GroupNames label
G:=SmallGroup(128,1052);
// by ID
G=gap.SmallGroup(128,1052);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,448,253,120,758,219,100,675,136]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=1,d^2=c,e^2=f^2=a,g^2=b,a*b=b*a,a*c=c*a,e*d*e^-1=g*d*g^-1=a*d=d*a,f*e*f^-1=a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,f*d*f^-1=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,e*g=g*e,f*g=g*f>;
// generators/relations